Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-2114170

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage , COVID-19 Serotherapy
2.
Neuroimage Clin ; 36: 103253, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2105659

ABSTRACT

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.

4.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article in English | MEDLINE | ID: covidwho-2017743

ABSTRACT

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Subject(s)
Brain Injuries , COVID-19 , Influenza, Human , Humans , Neurofilament Proteins , COVID-19/complications , Biomarkers , Autoantibodies , Immunity
5.
EClinicalMedicine ; 47: 101417, 2022 May.
Article in English | MEDLINE | ID: covidwho-1944815

ABSTRACT

Background: Preliminary evidence has highlighted a possible association between severe COVID-19 and persistent cognitive deficits. Further research is required to confirm this association, determine whether cognitive deficits relate to clinical features from the acute phase or to mental health status at the point of assessment, and quantify rate of recovery. Methods: 46 individuals who received critical care for COVID-19 at Addenbrooke's hospital between 10th March 2020 and 31st July 2020 (16 mechanically ventilated) underwent detailed computerised cognitive assessment alongside scales measuring anxiety, depression and post-traumatic stress disorder under supervised conditions at a mean follow up of 6.0 (± 2.1) months following acute illness. Patient and matched control (N = 460) performances were transformed into standard deviation from expected scores, accounting for age and demographic factors using N = 66,008 normative datasets. Global accuracy and response time composites were calculated (G_SScore & G_RT). Linear modelling predicted composite score deficits from acute severity, mental-health status at assessment, and time from hospital admission. The pattern of deficits across tasks was qualitatively compared with normal age-related decline, and early-stage dementia. Findings: COVID-19 survivors were less accurate (G_SScore=-0.53SDs) and slower (G_RT=+0.89SDs) in their responses than expected compared to their matched controls. Acute illness, but not chronic mental health, significantly predicted cognitive deviation from expected scores (G_SScore (p=​​0.0037) and G_RT (p = 0.0366)). The most prominent task associations with COVID-19 were for higher cognition and processing speed, which was qualitatively distinct from the profiles of normal ageing and dementia and similar in magnitude to the effects of ageing between 50 and 70 years of age. A trend towards reduced deficits with time from illness (r∼=0.15) did not reach statistical significance. Interpretation: Cognitive deficits after severe COVID-19 relate most strongly to acute illness severity, persist long into the chronic phase, and recover slowly if at all, with a characteristic profile highlighting higher cognitive functions and processing speed. Funding: This work was funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC), NIHR Cambridge Clinical Research Facility (BRC-1215-20014), the Addenbrooke's Charities Trust and NIHR COVID-19 BioResource RG9402. AH is funded by the UK Dementia Research Institute Care Research and Technology Centre and Imperial College London Biomedical Research Centre. ETB and DKM are supported by NIHR Senior Investigator awards. JBR is supported by the Wellcome Trust (220258) and Medical Research Council (SUAG/051 G101400). VFJN is funded by an Academy of Medical Sciences/ The Health Foundation Clinician Scientist Fellowship. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

6.
Nature ; 596(7872): 417-422, 2021 08.
Article in English | MEDLINE | ID: covidwho-1287811

ABSTRACT

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating.


Subject(s)
Aging/immunology , COVID-19 Vaccines/immunology , Immunity , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Aging/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Immunity/genetics , Immunization, Secondary , Immunoglobulin A/immunology , Immunoglobulin Class Switching , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunologic Memory/immunology , Inflammation/blood , Inflammation/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
7.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1230571

ABSTRACT

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Longitudinal Studies , Lymphocyte Activation/genetics , Oxidative Phosphorylation , Phenotype , Prognosis , Reactive Oxygen Species/metabolism , Severity of Illness Index , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL